
 INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (Online)
 www.ijdcst.com ISSN-2321-0257 (Print)

Data Integrity Proofs in Cloud Storage
Y.V.BHASKAR REDDY M.C.A., M.Tech.(PhD).#1 , R.vijaya,M.Tech#2 P.Ramadevi M.Tech#3

#1
Associate professor , #2 Assistant Professor #3 Assistant Professor

Abstract—Cloud computing has been envisioned as the de-

facto solution to the rising storage costs of IT Enterprises.

With the high costs of data storage devices as well as the rapid

rate at which data is being generated it proves costly for

enterprises or individual users to frequently update their

hardware. Apart from reduction in storage costs data

outsourcing to the cloud also helps in reducing the

maintenance. Cloud storage moves the user’s data to large

data centers, which are remotely located, on which user does

not have any control. However, this unique feature of the

cloud poses many new security challenges which need to be

clearly understood and resolved.
One of the important concerns that need to be addressed is

to assure the customer of the integrity i.e. correctness of his

data in the cloud. As the data is physically not accessible to

the user the cloud should provide a way for the user to check

if the integrity of his data is maintained or is compromised. In

this paper we provide a scheme which gives a proof of data

integrity in the cloud which the customer can employ to check

the correctness of his data in the cloud. This proof can be

agreed upon by both the cloud and the customer and can be

incorporated in the Service level agreement (SLA). This

scheme ensures that the storage at the client side is minimal

which will be beneficial for thin clients.

I. INTRODUCTION

Data outsourcing to cloud storage servers is raising trend

among many firms and users owing to its economic advan-

tages. This essentially means that the owner (client) of the

data moves its data to a third party cloud storage server which

is supposed to - presumably for a fee - faithfully store the data

with it and provide it back to the owner whenever required.

As data generation is far outpacing data storage it proves

costly for small firms to frequently update their hardware

whenever additional data is created. Also maintaining the

storages can be a difficult task. Storage outsourcing of data to

a cloud storage helps such firms by reducing the costs of

storage, maintenance and personnel. It can also assure a

reliable storage of important data by keeping multiple copies

of the data thereby reducing the chance of losing data by

hardware failures.Storing of user data in the cloud despite its

advantages has many interesting security concerns which need

to be extensively investigated for making it a reliable solution

to the problem of avoiding local storage of data. Many

problems like data authentication and integrity (i.e., how to

efficiently and

securely ensure that the cloud storage server returns correct

and complete results in response to its clients’ queries [1]),

outsourcing encrypted data and associated difficult problems

dealing with querying over encrypted domain [2] were dis-

cussed in research literature.

In this paper we deal with the problem of implementing a

protocol for obtaining a proof of data possession in the cloud

sometimes referred to as Proof of retrievability (POR).This

problem tries to obtain and verify a proof that the data that is

stored by a user at a remote data storage in the cloud (called

cloud storage archives or simply archives) is not modified by

the archive and thereby the integrity of the data is assured.

Such kinds of proofs are very much helpful in peer-to-peer

storage systems, network file systems, long-term archives,

web-service object stores, and database systems. Such

verification systems prevent the cloud storage archives from

misrepresenting or modifying the data stored at it without the

consent of the data owner by using frequent checks on the

storage archives. Such checks must allow the data owner to

efficiently, frequently, quickly and securely verify that the

cloud archive is not cheating the owner. Cheating, in this

context, means that the storage archive might delete some of

the data or may modify some of the data. It must be noted that

the storage server might not be malicious; instead, it might be

simply unreliable and lose or inadvertently corrupt the hosted

data. But the data integrity schemes that are to be developed

need to be equally applicable for malicious as well as

unreliable cloud storage servers. Any such proofs of data

possession schemes do not, by itself, protect the data from

corruption by the archive. It just allows detection of tampering

or deletion of a remotely located file at an unreliable cloud

storage server. To ensure file robustness other kind of

techniques like data redundancy across multiple systems can

be maintained.

While developing proofs for data possession at untrusted

cloud storage servers we are often limited by the resources at

the cloud server as well as at the client. Given that the data

sizes are large and are stored at remote servers, accessing the

entire file can be expensive in I/O costs to the storage server.

Also transmitting the file across the network to the client can

consume heavy bandwidths. Since growth in storage capacity

has far outpaced the growth in data access as well as network

bandwidth, accessing and transmitting the entire archive even

occasionally greatly limits the scalability of the

http://www.ijdcst.com/

 INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (Online)
 www.ijdcst.com ISSN-2321-0257 (Print)

Fig. 1. Schematic view of a proof of retrievability based on inserting random sentinels in the data file F [3]

network resources. Furthermore, the I/O to establish the data

proof interferes with the on-demand bandwidth of the server

used for normal storage and retrieving purpose. The problem

is further complicated by the fact that the owner of the data

may be a small device, like a PDA (personal digital assist) or

a mobile phone, which have limited CPU power, battery

power and communication bandwidth. Hence a data integrity

proof that has to be developed needs to take the above

limitations into consideration. The scheme should be able to

produce a proof without the need for the server to access the

entire file or the client retrieving the entire file from the

server. Also the scheme should minimize the local

computation at the client as well as the bandwidth consumed

at the client.

II. RELATED WORK

The simplest Proof of retrivability (POR) scheme can be

made using a keyed hash function hk(F). In this scheme the

verifier, before archiving the data file F in the cloud storage,

pre-computes the cryptographic hash of F using hk(F) and

stores this hash as well as the secret key K. To check if the

integrity of the file F is lost the verifier releases the secret key

K to the cloud archive and asks it to compute and return the

value of hk(F). By storing multiple hash values for different

keys the verifier can check for the integrity of the file F for

multiple times, each one being an independent proof.
Though this scheme is very simple and easily imple-

mentable the main drawback of this scheme are the high re-

source costs it requires for the implementation. At the verifier

side this involves storing as many keys as the number of

checks it want to perform as well as the hash value of the data

file F with each hash key. Also computing hash value for even

a moderately large data files can be computationally

burdensome for some clients(PDAs, mobile phones, etc). As

the archive side, each invocation of the protocol requires the

archive to process the entire file F . This can be

computationally burdensome for the archive even for a

lightweight operation like hashing. Furthermore, it requires

that each proof requires the prover to read the entire file F - a

significant overhead for an archive whose intended load is

only an occasional read per file, were every file to be tested

frequently[3].

Ari Juels and Burton S. Kaliski Jr proposed a scheme called

Proof of retrievability for large files using ”sentinels”[3]. In this

scheme, unlike in the key-hash approach scheme, only a single

key can be used irrespective of the size of the file or the number

of files whose retrievability it wants to verify. Also the archive

needs to access only a small portion of the file F unlike in the

key-has scheme which required the archive to process the entire

file F for each protocol verification. This small portion of the file

F is in fact independent of the length of F . The schematic view of

this approach is shown in Figure 1.
In this scheme special blocks (called sentinels) are hidden

among other blocks in the data file F . In the setup phase, the

verifier randomly embeds these sentinels among the data

blocks. During the verification phase, to check the integrity of

the data file F , the verifier challenges the prover (cloud

archive) by specifying the positions of a collection of sentinels

and asking the prover to return the associated sentinel values.

If the prover has modified or deleted a substantial portion of F

, then with high probability it will also have suppressed a

number of sentinels. It is therefore unlikely to respond

correctly to the verifier.To make the sentinels

indistinguishable from the data blocks, the whole modified

file is encrypted and stored at the archive. The use of

encryption here renders the sentinels indistinguishable from

other file blocks. This scheme is best suited for storing

encrypted files.

As this scheme involves the encryption of the file F using a

secret key it becomes computationally cumbersome especially

when the data to be encrypted is large. Hence, this scheme

http://www.ijdcst.com/

 INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (Online)
 www.ijdcst.com ISSN-2321-0257 (Print)

proves disadvantages to small users with limited

computational power (PDAs, mobile phones etc.). There will

also be a storage overhead at the server, partly due to the

newly inserted sentinels and partly due to the error correcting

codes that are inserted. Also the client needs to store all the

sentinels with it, which may be a storage overhead to thin

clients (PDAs, low power devices etc.).

III. OUR CONTRIBUTION

We present a scheme which does not involve the encryption

of the whole data. We encrypt only few bits of data per data

block thus reducing the computational overhead on the clients.

Fig. 2. A data file F with 6 data blocks

The client storage overhead is also minimized as it does not

store any data with it. Hence our scheme suits well for thin

clients.

In our data integrity protocol the verifier needs to store only

a single cryptographic key - irrespective of the size of the data

file F - and two functions which generate a random sequence.

The verifier does not store any data with it. The verifier before

storing the file at the archive, preprocesses the file and

appends some meta data to the file and stores at the archive.

At the time of verification the verifier uses this meta data to

verify the integrity of the data. It is important to note that our

proof of data integrity protocol just checks the integrity of

data i.e. if the data has been illegally modified or deleted. It

does not prevent the archive from modifying the data. In order

to prevent such modifications or deletions other schemes like

redundant storing etc, can be implemented which is not a

scope of discussion in this paper.

IV. A DATA INTEGRITY PROOF IN CLOUD BASED

ON SELECTING RANDOM BITS IN DATA BLOCKS

The client before storing its data file F at the client should

process it and create suitable meta data which is used in the

later stage of verification the data integrity at the cloud

storage. When checking for data integrity the client queries

the cloud storage for suitable replies based on which it

concludes the integrity of its data stored in the client.

A. Setup phase

Let the verifier V wishes to the store the file F with the
archive. Let this file F consist of n file blocks. We initially
preprocess the file and create metadata to be appended to the
file. Let each of the n data blocks have m bits in them. A
typical data file F which the client wishes to store in the cloud
is shown in Figure 2. The initial setup phase can be described
in the following steps

1) Generation of meta-data: Let g be a function defined as
follows

g(i, j) → {1..m}, i ∈ {1..n}, j ∈ {1..k} (1)

Where k is the number of bits per data block which we wish to

read as meta data. The function g generates for each data.

block a set of k bit positions within the m bits that are in the data

block. Hence g(i, j) gives the j
th

 bit in the i
th

 data block. The

value of k is in the choice of the verifier and is a secret known

only to him. Therefore for each data block we get a set of k bits

and in total for all the n blocks we get n ∗ k bits. Let mi represent

the k bits of meta data for the i
th

 block. Figure 3 shows a data

block of the file F with random bits selected using the function g.
2) Encrypting the meta data: Each of the meta data from the

data blocks mi is encrypted by using a suitable algorithm to

give a new modified meta data Mi.
Without loss of generality we show this process by using a

simple XOR operation. Let h be a function which generates a

k bit integer αi for each i. This function is a secret and is
known only to the verifier V .

h : i → αi, αi ∈ {0..2
n
} (2)

For the meta data (mi) of each data block the number αi is

added to get a new k bit number Mi.

Mi = mi + αi (3)

In this way we get a set of n new meta data bit blocks. The
encryption method can be improvised to provide still stronger
protection for verifiers data.

3) Appending of meta data: All the meta data bit blocks that are
generated using the above procedure are to be con-catenated
together. This concatenated meta data should be appended to the file
F before storing it at the cloud server. The file F along with the

appended meta data F
e

 is archived with the cloud. Figure 4 shows

the encrypted file F
e

 after appending the meta data to the data file F .

B. Verification phase

Let the verifier V want to verify the integrity of the file F .
It throws a challenge to the archive and asks it to respond. The
challenge and the response are compared and the verifier
accepts or rejects the integrity proof.

http://www.ijdcst.com/

 INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (Online)
 www.ijdcst.com ISSN-2321-0257 (Print)

Suppose the verifier wishes to check the integrity of n
th

 block.

The verifier challenges the cloud storage server by

Fig. 3. A data block of the file F with random bits

selected in it

Fig. 4. The encrypted file F which will be stored in the

cloud.

specifying the block number i and a bit number j generated by
using the function g which only the verifier knows. The
verifier also specifies the position at which the meta data
corresponding the block i is appended. This meta data will be
a k-bit number. Hence the cloud storage server is required to
send k+1 bits for verification by the client.
The meta data sent by the cloud is decrypted by using the

number αi and the corresponding bit in this decrypted meta

data is compared with the bit that is sent by the cloud. Any

mismatch between the two would mean a loss of the integrity

of the clients data at the cloud storage.

V. CONCLUSION AND FUTURE WORKS

In this paper we have worked to facilitate the client in

getting a proof of integrity of the data which he wishes to

store in the cloud storage servers with bare minimum costs

and efforts. Our scheme was developed to reduce the

computational and storage overhead of the client as well as to

minimize the computational overhead of the cloud storage

server. We also minimized the size of the proof of data

integrity so as to reduce the network bandwidth consumption.
At the client we only store two functions, the bit generator

function g, and the function h which is used for encrypting the

data. Hence the storage at the client is very much minimal

compared to all other schemes [4] that were developed. Hence

this scheme proves advantageous to thin clients like PDAs and

mobile phones.
The operation of encryption of data generally consumes a

large computational power. In our scheme the encrypting

process is very much limited to only a fraction of the whole data

thereby saving on the computational time of the client.
Many of the schemes proposed earlier require the archive to

perform tasks that need a lot of computational power to

generate the proof of data integrity[3]. But in our scheme the

archive just need to fetch and send few bits of data to the

client.
The network bandwidth is also minimized as the size of the

proof is comparatively very less(k+1 bits for one proof).

It should be noted that our scheme applies only to static

storage of data. It cannot handle to case when the data need to be

dynamically changed. Hence developing on this will be a future

challenge. Also the number of queries that can be asked by the

client is fixed apriori. But this number is quite large and can be

sufficient if the period of data storage is short. It will be a

challenge to increase the number of queries using this scheme.

REFERENCES

[1] E. Mykletun, M. Narasimha, and G. Tsudik,

“Authentication and integrity in outsourced databases,”

Trans. Storage, vol. 2, no. 2, pp. 107–138, 2006.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in SP ’00:

Proceedings of the 2000 IEEE Symposium on Security and

Privacy. Washington, DC, USA: IEEE Computer Society,

2000, p. 44.

[3] A. Juels and B. S. Kaliski, Jr., “Pors: proofs of
retrievability for large files,” in CCS ’07: Proceedings of
the 14th ACM conference on Computer and
communications security. New York, NY, USA: ACM,
2007, pp. 584–597.

http://www.ijdcst.com/

